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Abstract 

Artificial intelligence and machine learning are transforming scientific disciplines, but their full potential for climate 

change mitigation remains elusive. Here, we conduct a systematic review of applied machine learning studies that 

are of relevance for climate change mitigation, focusing specifically on the fields of remote sensing, urban 

transportation, and buildings. The relevant body of literature spans twenty years and is growing exponentially. We 

show that the emergence of big data and machine learning methods enables climate solution research to overcome 

generic recommendations and provide policy solutions at urban, street, building and household scale, adapted to 

specific contexts, but scalable to global mitigation potentials. We suggest a meta-algorithmic architecture and 

framework for using machine learning to optimize urban planning for accelerating, improving and transforming 

urban infrastructure provision. 

 
1. Introduction  

Policy makers, mayors, administrations and individuals seek to advance climate solutions and demand tailored 

approaches that match their political, economic and climatic conditions (Hermwille, Obergassel, Ott, & Beuermann, 

2017; Reckien et al., 2018; Shan et al., 2018). A main source of reference are the assessment reports of the 

Intergovernmental Panel on Climate Change (IPCC) that provides comprehensive overviews on technology 

assessments, sectoral approaches, integrated scenarios, and policy studies (IPCC, 2014, 2018). Modelers emphasize 

multiple socially optimal decarbonization pathways consistent both with global average temperature stabilization 

targets and stylized societal or environmental constraints. As a result, broad recommendations about technological 

change, fossil fuel phase-out, and national policies emerge and serve as a reference for governments.  

Yet, detailed and contextualized policy options that reflect the idiosyncrasies of places and cultures are scarce and 

often insufficient. Policy makers are left disoriented on which measures are adequate and impactful, and how 

everyday decisions related to infrastructure investments or urban planning can be modified to adjust to a low-carbon 

future. In research, important disagreements remain when quantifying mitigation potential, especially for energy 

end-uses, demand and services, and for human settlements that are differentiated with across developments, 

geographies, and spatial structure (Creutzig, Fernandez et al., 2016; Wilson, Grubler, Gallagher, & Nemet, 2012). For 

example, integrated assessment models and bottom-up sectoral studies differ on the future emission reduction from 

energy efficiency measures in the transport (Creutzig, 2016) and buildings sectors (Lucon et al., 2014). Global 

assessments insufficiently reflect variations in local specificities e.g. infrastructural, economic, climatic, social or 

political contexts (Creutzig et al., 2019); and place-specific studies investigating the building, street, or urban scale 

remain idiosyncratic in context and differ in their boundaries of analysis, thus rendering their contribution to global 



climate change mitigation a distant goal, but also making comparisons between local-scale studies difficult (Lamb, 

Callaghan, Creutzig, Khosla, & Minx, 2018). The IPCC’s AR5 reports knowledge gaps on urban climate action (IPCC, 

2014): there is too little understanding of the magnitude of the emissions reductions from altering urban form, and 

emissions savings from integrated infrastructure and land use planning. New analyses are required both to 

understand relationships (Silva, Horta, Leal, & Oliveira, 2017) and simulate future pathways with and without 

interventions (Silva, Khan, & Han, 2018; Silva, Leal, Oliveira, & Horta, 2018).  

Therefore, researchers increasingly call for systematic, methodically well-grounded research to upscaleplace-specific 

climate solutions while respecting local variation and context (Acuto, Parnell, & Seto, 2018; Creutzig & Kammen, 

2009; Creutzig et al., 2019). Two new developments have high potential to help address this desired transformation.  

The first component of this transformation is the emergence of big data (Ford et al., 2016) at high spatial resolution 

and individual heterogeneity. Big data is often produced from sensors or user data; it includes satellite and aerial 

imagery, volunteered geographic information (Haklay, 2010), such as OpenStreetMap, geo-localized devices data, 

such as transaction data (Di Clemente et al., 2018) or social media data (Ilieva & McPhearson, 2018), and surveys or 

governmental data, such as cadastral data. These rich sources of information unfold great potential for analyses of 

improved granularity of climate solutions (Creutzig et al., 2019; Ilieva & McPhearson, 2018).  

The second component is machine learning (ML). Breakthroughs in computer science theory, algorithmic research 

and computational power provide the instruments to extract meaningful information from massive data. ML 

methods, based on learning theory (Vapnik, 1999), permit to generalize pattern recognition on unseen data outside 

of the observed sample (Vapnik, 1999). Since the mid-2000s, deep multi-layer architectures – so-called deep learning 

(DL) methods (LeCun, Bengio, & Hinton, 2015) – increased ML performance by learning high-level representations 

of the data. See Box 1 for a general introduction on machine learning.  

Box 1 Machine learning in a nutshell.  
 
Numerous families and traditions. High-level learning tasks include classification, regression, or probability density 
estimation. Main ML families include supervised learning (where the target value is known during training), 
unsupervised learning (no target value is known), or reinforcement learning (learning occurs through interactions 
with an environment), and sub-families include, for example for supervised learning, kernel methods or tree-
based methods. For an introduction to ML, see (Hastie, Tibshirani, & Friedman, 2009) and to DL specifically see 
(Goodfellow, Bengio, & Courville, 2016).  
 
Simple to complex methods. On the simpler end, linear classifiers draw lines between groups of data points, and 
can be enough for simple tasks at large scales, e.g. classifying built-up areas on satellite imagery (Esch et al., 2017). 
In contrast, generative adversarial networks can achieve complex tasks like mimicking the style of an image; for 
example they can generate a realistic image of a (climate-induced) flooded area from a picture taken with a 
normal weather (Zhou, Luccioni, Cosne, Bernstein, & Bengio, 2020).  
 
Data science life cycle. Machine learning tasks are embedded in the larger life cycle of a data science project, 
which includes for example data collection, problem formulation, and model maintenance when a model is used 
with new streams of data over time. There are many resources on generic aspects of the data cycle life cycle, see 
(Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu, 2019) for a particular focus on interpretable approaches. For 
practical tips on model training, refer for example to (Montavon, 2012).  
 
Computational cost of ML. The largest deep neural networks require training billions of parameters – for example 
transformers for natural language processing – and consume extreme amounts of energy (Strubell, Ganesh, & 

McCallum, 2019). However, in fact, most ML methods run within seconds to hours on personal computers. It is 
possible to contain deep neural networks’ energy footprint, by explicitly considering the energy impact of training 
models (Schwartz, Dodge, Smith, & Etzioni, 2019). 

 



Both dimensions appear also in the concept of smart cities, an umbrella term for (digital) technologies that aim to 

make cities more efficient, and possibly more sustainable (Silva, Khan et al., 2018; Yigitcanlar et al., 2019) – even 

though researchers and politicians must remain careful not to conflate smartness with sustainability (Noy & Givoni, 

2018). For the purpose of this article, we are mostly concerned with the applications and potential of ML algorithms 

for climate change mitigation in urban areas, a more specific topic than what is generally understood when referring 

to smart cities.  

The use of ML in climate change mitigation research remains nascent. (Rolnick et al., 2019) provide a broad review 

on ML applications for tackling climate change, and find relevant applications spanning many domains. Most 

successful applications in climate change include Earth system analysis (Reichstein et al., 2019), such as modelling 

multi-scale atmospheric processes (Rasp, Pritchard, & Gentine, 2018), and modelling climate impacts at high 

resolution by making use of big data from satellites, weather stations, radars, and other sources to specify the 

consequences of hurricanes and deforestation on ecosystems, or of drought on crop yields (Atlas AI, 2020; Fletcher, 

Lickley, & Strzepek, 2019; McDowell et al., 2015). However, ML is not yet a common tool in climate change mitigation 

communities. For example, the contribution of the working group III on mitigation in the IPCC fifth assessment report 

(AR5) (IPCC, 2014) does not mention “machine learning” or “neural network”. This may be rooted in the dominance 

of the scenario literature within the IPCC reports, along with literature-based assessments of costs and potentials.  

A confluence of several factors is likely to make ML more prevalent in climate change mitigation research in the next 

years. First, increasingly rich sources of data enable detailed studies in end-use sectors, including buildings and 

transportation. Second, the spatial dimension within cities and human settlements is gaining traction, since its 

explicit consideration in the IPCC’s AR5 (Seto et al., 2014). The spatial solutions considered correspond to urban end-

use sectors: building and transportation accounted for 23 % of the global energy-related CO2 emissions and for 31 

% and 28 % of global final energy use in 2014 (IPCC, 2018). Third, demand-side climate solutions, including behavioral 

nudges and digitalization, are introduced as explicit consideration in the IPCC’s AR6 (Creutzig et al., 2018), as such 

solutions might deliver short-term reductions in greenhouse gas (GHG) emissions (Grubler et al., 2018). Demand-

side solutions require fine-grained analyses, as they depend on local factors that vary widely across geographies 

(Grubler et al., 2018). Forth, big corporate players like Google are getting increasingly interested in applying their 

ML expertise to climate-change relevant issues (Google, 2019). It is hence important to overview the nascent 

literature and insights at the interface of machine learning and climate change mitigation, and provide guidance on 

applications with relevance to GHG emission abatement.  

Here, we chose the spatial dimension as an entry point to ask for the potential of machine learning to upscale 

geographically differentiated solutions in urban areas and provide tailored urban planning solutions for 

decarbonizing cities worldwide. We suggest that machine learning methods could be central for spatially explicit and 

scalable climate solutions. For this, (i) we systematically review four domains of relevance for spatially explicit 

climate change solutions in cities – dedicated climate change mitigation studies, remote sensing, building and 

transport –, and (ii) we propose and detail a nested architecture of ML algorithms that combines the methods and 

insights from all these domains. As a result, we point to the potential of ML methods that could be systematically 

harvested by scientists to populate high-resolution urban planning models for climate change mitigation, which 

could help plan low-carbon cities with high contextual accuracy.  

 

2. Few ML research targets climate change mitigation, but many provide relevant substance  

In the following, we systematically map the relevant literature, based on the archive available in the online search 

engine Web of Science. For each publication, we extract its specific topic and the ML method used. Four search 

queries were designed to detect relevant literature on 1) ML and climate change mitigation; 2) ML and remote 

sensing, 3) ML and buildings; 4) ML and urban transportation. Queries were iteratively defined based on expressions 

present in the articles. The protocol follows the ROSES reporting standards for systematic maps (Haddaway & 



Macura, 2018; James, Randall, & Haddaway, 2016), and includes manual labelling of several thousand of articles and 

non-negative matrix factorization (Lee & Seung, 1999) for topic discovery.  

We find few studies relying on ML methods explicitly to address climate change mitigation, but more than 10 times 

more for sector-specific topics with direct or instrumental relevance to mitigation strategies (see Fig. 1). Directly 

relevant records address GHG emissions or energy use. Instrumental records do not make the link explicitly but offer 

important intermediary material, for example, data on the building stock that in turn can help develop mitigation 

strategies in the sector. Overall, we identify 121 publications for climate change mitigation, 1,120 for buildings, 1,705 

for transportation and 8,824 for remote sensing (see Fig. 1).  

 

Fig. 1. Growth in applications of machine learning in research on climate solutions. The literature using ML for climate mitigation 

explicitly (green) is almost inexistent before 2010, but relevant studies can be found in other fields since the 1980’s. The literature 

exhibits overall an exponential growth over the two last decades. Records are aggregated by time slices and divided by field and 

relevance to mitigation. Directly relevant records (dark colored) address greenhouse gas emissions or energy use, while 

instrumental records (light colored) do not make the link explicitly but offer important intermediary material. Pie charts show the 

share of publications per regions; “+” indicated regions with growing share of records between periods. (EU: European Union; 

ROW: Rest of the world.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article). 

Only 121 studies apply ML methods for researching explicitly climate change mitigation. We defined “climate change 

mitigation” using a conservative search string, which aimed to retrieve studies that specifically use language and 

goals of core climate change mitigation communities (see details in supplementary methods). This explains why we 

find a much smaller set of studies compared to (Rolnick et al., 2019). Supervised learning methods account for about 



80 % of all ML applications in mitigation studies (Fig. 2), and apply random forest, support vector learning or shallow 

artificial neural networks to generalize insights from data to other temporal or geographical domains.  

 

Fig. 2. Summary of machine learning methods reviewed. Remote sensing, and to lesser degree, spatial studies in mobility and 

buildings, rely on ML methods, while climate change mitigation studies only scarcely build on ML methods. Supervised learning 



tasks (columns 1 to 6) are the most frequent applications in all fields. The information was extracted from the publicly available 

metadata of the records; ‘Machine Learning not defined’ is reported when there is no specific method available from the 

metadata. When several groups of methods are used in a record (e.g. dimensionality reduction and supervised learning), the 

record is counted in both categories. The gradient of the colors on the heat-map reflects the number of articles. *Graphical 

models were added to this category. 

Recent progress in remote sensing is grounded in ML and DL methods, which are now widely used in this field (Zhu 

et al., 2017). ML has been a common tool in image processing for years, which has likely encouraged remote sensing 

researchers to use the same techniques. Remote sensing inputs are high-dimensional pictures with a large number 

of pixels and potentially many spectral bands. Finding relevant features is therefore challenging and requires 

methods that can learn complex patterns, which may also explain why deep learning was used most often in remote 

sensing studies compared to the other fields reviewed (see Fig. 2). 

In the 1120 studies in the building sector, ML-based analysis, mostly at the individual building scale, investigates 

efficient energy use, an objective in support of climate change mitigation. For example, ML identifies contextual 

determinants of energy uses, e.g. appliance use from electricity load (Kelly & Knottenbelt, 2015) or faults in 

mechanical systems (Lei, Jia, Lin, Xing, & Ding, 2016). These results have helped analysts assess solutions that are 

tailored to highly specific contexts, and have the potential to inform how solutions can be spread across building 

stock and users.  

Out of 1700 publications on transportation, we find about half (48 %) directly relevant, although with varying 

mitigation potential. The efficiency of road networks is the option most investigated, primarily with the goal of 

reducing congestion; but only few studies investigated energy use explicitly (3 % each). The other half (52 %) of the 

relevant records can play an instrumental role for mitigation studies, by providing background data on travel 

determinants, flows, modes and infrastructures, which are all relevant to low-carbon cities. Transportation has the 

highest number of successful reinforcement learning applications (Fig. 2), such as (Wen, Zhao, & Jaillet, 2017).  

From our screening of the identified literature, we extracted four structural components of ML studies in support of 

climate mitigation solutions in cities, described in Fig. 3A and summarized with relevant examples in Table 1: (1) 

mapping the infrastructure, (2) improving energy efficiency, (3) identifying behavioral patterns, and (4) 

infrastructure planning. In the following, for each component we show selected examples of how ML catalyzes 

geographically explicit climate solutions (Fig. 3B, see Table 1 for a summary of examples). ML is used for general 

tasks across application areas, for example forecasting; we summarized those tasks in Box 2. 

2.1. Mapping infrastructure  

The infrastructure is the physical basis of human societies and constraints energy use and GHG emissions (Creutzig, 

Fernandez et al., 2016). ML extracts from unstructured information, like remote sensing, geometric and semantic 

information about the infrastructure, helps enrich data-scarce environments, e.g., in low-income countries, and offer 

ways to integrate spatial models with climate information.  

2.1.1. From remote sensing to infrastructure models  

Remote sensing, and specifically satellite imaging, enables to acquire data remotely on land-use patterns, land-use 

change, and other spatial metrics. Operating on these data, ML algorithms characterize human settlements by 

identifying geometric information, e.g. footprints (Microsoft, 2018), heights (Biljecki, Ledoux, & Stoter, 2017), and 

locations (Esch et al., 2017), as well as semantic information, e.g. buildings usage (Sturrock, Woolheater, Bennett, 

Andrade-Pacheco, & Midekisa, 2018; Wurm, Schmitt, & Taubenbock, 2016) or physical properties (Blaha et al., 2016; 

Tusting et al., 2019). As output, maps can display built-up areas worldwide at a few-meter resolution (Esch et al., 

2017), or, at the country level, precise building footprints (Microsoft, 2018). The purpose of building usage, for 

example commercial vs. residential, or new vs. historical buildings can be classified from open geographical data 

(Sturrock et al., 2018) or survey data (Tusting et al., 2019) with supervised learning. A new class of studies aims for 



complete semantic 3D reconstruction, e.g. from aerial imagery with class labels for different parts of buildings (Blaha 

et al., 2016).  

 

 

 

Fig. 3. Towards scaling up urban solutions with machine learning and big data. (A) Main components of ML research on urban 

spaces relevant to climate change mitigation. Data sensed in the physical world and processed by ML enables modeling and 

predicting cities’ infrastructure and activities, assessing fine- grained energy use and emission patterns, and modelling different 

future pathways towards low-carbon societies. (B) Integrating ML studies on cities has the potential to provide high-resolution 

low-carbon urban planning worldwide and to realize a scaling up of current urban solutions. (VGI: Voluntary Geographical 

Information). 

2.1.2. Generalizing to data-scarce environments  

Where there is little ground data, as it is often the case in low-income countries, ML can discover pivotal proxies 

from remote sensing. Such proxies go beyond describing infrastructure and can also identify socio-economic 

characteristics of a region. For this purpose, deep learning methods compress information from the spatial settings 

of cities into abstract features that are relevant for predicting metrics such as poverty (Jean et al., 2016) or 

demographics (Naik, Raskar, & Hidalgo, 2016). For example, (Jean et al., 2016) used nighttime light intensity and 

corresponding daytime imagery to extract spatial features that revealed predictive of consumption expenditure and 

asset wealth.  

2.1.3. Integration of spatial big data and climate semantics  

Remote sensing contributed most directly to mitigation research by identifying deforestation and similar land use 

dynamics. Several pioneering publications in the 2000’s used regression trees to assess the deforestation in tropical 

or humid forests (DeFries et al., 2002), to retrieve the associated carbon emission with spatially explicit resolution 

(Baccini et al., 2012) or to demonstrate that urban growth drives deforestation more than, counterintuitively, rural 

population growth (DeFries, Rudel, Uriarte, & Hansen, 2010).  

Remote sensing applications also support the identification of spatial patterns of CO2 emissions and deployment of 

mitigation technologies. For example, Bayesian networks characterized the relationships between remote sensing 

data and urban CO2 concentrations (Tao, Zhou, Wu, & Yu, 2014). DL applications identified installed photovoltaic 

systems but also the most suitable roofs and regions for photovoltaics deployment with high geographical precision 



(Yu, Wang, Majumdar, & Rajagopal, 2018). And to assess which settlements are most-suited for district heating 

system, clustering methods determined relevant building types by fusing data sources (Geiß et al., 2011).  

2.2. Improving energy efficiency  

Individual infrastructural components are critical for the efficiency of the urban system (Gershenfeld, Samouhos, & 

Nordman, 2010) and have been subject to more precise modelling at small scales. ML helps optimize buildings by 

making sense of complex electricity data, as well as transportation modes, for instance by analyzing their 

trajectories. A key challenge for ML applications is to extend the relevance of idiosyncratic results from single cases 

to larger populations.  

Box 2 Main usages of ML for climate change mitigation.  
 
Mining sustainability-relevant metrics. Which solutions for making a city more sustainable can one draw from 
staring at millions of points moving on a map? Big data often comes as a byproduct of digital activities, rather 
than being collected for the purpose of a sustainability-related study. A key application area is to retrieve a signal 
of interest out of high-dimensional and noisy sources, e.g. from activity (Kelly & Knottenbelt, 2015) and textual 
data (Callaghan, Minx, & Forster, 2020). Another application area is, when clean but numerous covariates are 
available, to identify groups of similar behaviors (Albert & Maasoumy, 2016) or contexts (F. Creutzig et al., 2015). 
 
Generating data. By comparing the aerial images of a dense mixed-use neighborhood with that of a vast 
commercial area covered with parking lots, one may be able to identify which urban setting induces more or less 
car mobility. Such information is not directly present in the pixels of the images, but inferred by regularities known 
about the context of the picture. Supervised ML can learn to draw such inferences from large samples of paired 
input-target and such capabilities enable to automate the creation of fine-grained datasets on GHG emissions 
(Alam et al., 2018), energy uses (Kontokosta & Tull, 2017) and their spatial context.  
 
Forecasting energy demand and supply. Forward-looking predictions occupy a predominant role in climate 
research, and help decision making under uncertainty. ML is well suited for short- to mid-term predictions, which 
can offer concrete opportunities for emission savings. For example, nowcasting the production from PVs can 
enable to reduce unnecessary use of backup power generation from more carbon-intensive carriers like gas. ML 
methods can learn patterns in time series (Mocanu et al., 2016), emulate physical models (Nutkiewicz, Yang, & 

Jain, 2018), and be used conjointly in hybrid models.  
 
Controlling end-use systems. Various devises, e.g. heat pumps, do not require operate continuously to provide a 
given comfort, but are rarely adjusted, leading to unnecessary energy consumption. Beyond this simple example, 
much more complex energy-intensive systems offer opportunities for autonomous monitoring, for example the 
HVAC system of a large hospital. Key applications include controlling systems, detecting relevant events like faults 
(Afroz et al., 2018), and coordinating several processes to optimize the energy used to deliver a service (Kazmi et 
al., 2018).  
 
Inferring causality. To best allocate limited resources to certain mitigation efforts, beyond pinpointing where 
problems are, one needs to ponder how effective possible interventions are likely to be – i.e. inferring their causal 
effect (Athey, 2017). New data sources offer the opportunity for high-resolution program evaluation, which can 
enable to target and tailor interventions, including information campaigns, regulations, and retrofit. Main 
applications include estimating heterogeneous treatment effects (Beiser-McGrath & Bernauer, 2019) and 
counterfactual predictions (Burlig et al., 2017). 

 

2.2.1. Vehicles efficiency  

In road transport, emissions and other externalities have been assessed in only a limited but growing set of 

applications (3%). Emissions have been in certain cases metered and analyzed at a finer scale than before: ML 



approaches range from downscaling national transportation emissions to the street level (Alam, Duffy, Hyde, & 

McNabola, 2018), to estimating of vehicle emissions from smartphone GPS traces (Lehmann & Gross, 2017), and 

analyzing of the emissions associated with the current German fleet development (Krause, Small, Haas, & Jaeger, 

2016).  

Reducing inefficacies in driving offers marginal emissions reduction potential, with opportunities for granular options 

well-fitted to the application of ML. Trading-off travel time and emission reduction for eco-routing entails combining 

a large number of combinations in a highly interactive way, which is possible with support vector machines (Zeng, 

Miwa, & Morikawa, 2017). Inefficient driving behavior can be learned at the individual level: ML can reduce energy 

use of a trip by reasoning about observed driving behaviors and related driver characteristics (de Penning, d ’Avila 

Garcez, Lamb, Stuiver, & Meyer, 2014), or discover regions where drivers repetitively drive inefficiently (Corcoba 

Magana & Munoz-Organero, 2015).  

2.2.2. Single building optimization  

A central tenet of the literature applying ML to buildings is to attain thermal comfort while minimizing energy use. 

Single-building models predict energy use patterns, relying on building-scale data such as smart metering and 

Internet of Things (Shaikh, Nor, Nallagownden, Elamvazuthi, & Ibrahim, 2014), and by make sense of time series of 

electricity demand in a multiplicity of contexts (from single-household building to large hospital) and under the 

influence of various impacting factors (from weather to defections in ventilation systems) (Harish & Kumar, 2016). 

When there are no smart meters, ML methods can enable to augment the available level of granularity e.g. by 

understanding individual appliance loads from the total electricity consumption signal with energy dissagregation 

techniques (Kelly & Knottenbelt, 2015). In turn, ML applications can help reduce energy losses in specific appliances 

and systems in the building, in particular heating, ventilation, and air conditioning (HVAC) systems (Afroz, Shafiullah, 

Urmee, & Higgins, 2018). Examples include correcting malfunctions and unnecessary operations in energy intensive 

systems (Lei et al., 2016), or better controlling systems e.g. water heating (Kazmi, Mehmood, Lodeweyckx, & 

Driesen, 2018). However, an important limitation of these applications is that relying on a large amount of precise 

data confines most of the studies to one or a few buildings (∼75 % of the applications).  

2.2.3. Integrating high precision modelling  

Upscaling the spatial relevance of current high-resolution applications in building energy use modelling also requires 

generalization from data-rich to data-scarce contexts. At various scales, from building to regions, the literature 

exhibits examples of such predictions with supervised learning algorithms trained on high-quality data (Khayatian, 

Sarto, & Dall’O’, 2017; Kontokosta & Tull, 2017). Methodologies for cross-building transfer learning include training 

neural networks on merged data from similar buildings with different distributions and different seasonal profiles 

(Ribeiro, Grolinger, ElYamany, Higashino, & Capretz, 2018), and using reinforcement learning and deep neural 

networks conjointly to develop models that generalize from commercial to residential buildings, or from gas- to 

power-heated buildings (Mocanu, Nguyen, Kling, & Gibescu, 2016).  

2.3. Identifying behavioral patterns  

Dwellers’ choices ultimately determine activity levels and resulting emissions (Creutzig et al., 2018). Behavioral data 

and models are focal to assess the propensity of actors to change towards more sustainable societies. Integrating 

human behaviors in city models can help identify dynamical feedbacks: for example, infrastructure provision (such 

as bike lanes) can foster changes in mobility choices. ML offer insights in sensed data and recorded traces of users 

of digital services, and supports the analysis of surveys and experimental data.  

2.3.1. Understanding cities dynamics  

ML is used to preprocess data from urban sensors and later to identify behavioral patterns of mobility and building 

users. For example, computer vision autonomously classifies and detects objects on images and videos (Boukerche, 



Siddiqui, & Mammeri, 2017); and thus computer vision techniques monitor traffic, automatically count vehicles and 

even derive socioeconomic information relying on data from street and road imagery (traffic cameras and Google 

Street View). For example, (Gebru et al., 2017) applied a convolutional neural network to street view images to 

classify motor vehicles encountered in particular neighborhoods, by this predicted income and voting patterns in 

neighborhoods across 200 US cities.  

By making sense of mobility patterns, researchers provide valuable information on the structure of cities for planning 

(6 % of transport applications, see an overview (Zhao, Tarkoma, Liu, & Vo, 2016)). Mining mobility pattern pertmits 

to investigate locations where dwellers tend to go often, what are the trip purposes, urban activities or urban 

functions, e.g. using so-called points of interest (POIs). Examples include retrieving transportation modes from GPS 

(Zhu, Li, Liu, Wang, & Yang, 2016) or trip chains from smart cards (Han & Sohn, 2016). Beyond mobility, call details 

records can be used to predict domestic energy use (Bogomolov et al., 2016).  

2.3.2. Engaging with human behaviors  

At the individual level, behavioral research investigates how psychological aspects – e.g. engagement (Jones, Hine, 

& Marks, 2017) or acceptance of novelty (Carr-Cornish, Ashworth, Gardner, & Fraser, 2011) – are relevant to better 

target interventions. For example, predicting environmental attitudes with ML revealed that the scale of future 

consequences better predicts attitudes towards climate than the factors traditionally considered, e.g. income and 

education (Beiser-McGrath & Huber, 2018).  

Understanding the human dimension of building energy use (∼ 10 %), such as occupant behavior or investments, is 

instrumental to reducing absolute consumption levels. One type of studies investigates how to monitor occupancy 

and usage (∼ 6%), mostly with the goals of more accurately predicting energy usage or controlling smart adaptative 

devices. Another type of studies scrutinizes occupant behaviors (∼ 2%) and engages directly with occupants by using 

heuristic models of behavioral triggers and resistances to more energy-efficient lifestyles. An example of the second 

category uses interpretable “trees”, where branches identify homogeneous sub-groups of consumers with respect 

to socio-economic attributes, and predictive of their likely reaction to a specific type of energy efficiency 

communication (Albert & Maasoumy, 2016). In another example, hierarchical clustering of people’s mental models 

about their level of domestic energy consumption consistently revealed categorizations emphasizing the importance 

of the location of appliances in the house (Gabe-Thomas, Walker, Verplanken, & Shaddick, 2016).  

Understanding mobility choices is key to device low-carbon policies in urban transportation. Estimating the 

determinants of decisions, ML methods can perform better than standard discrete choice models, for instance in 

modelling car ownership (Paredes, Hemberg, O’Reilly, & Zegras, 2017). DL (Wang & Zhao, 2018) or semi-supervised 

Bayesian learning (Yang, Shebalov, & Klabjan, 2018) directly substitute for the traditional logit and probit functions 

in the model formulation. Coupling neural network with an agent-based model, an innovative study explored the 

role of emotions in agents’ decision to buy an electric vehicle and simulated the effect of public policies on decisions, 

e.g., by introducing exclusive lanes for electric vehicles (Wolf, Schr¨oder, Neumann, & de Haan, 2015). 2.4. Planning 

and management Providing and managing infrastructures frames current and future behaviors. Planning and 

operating low-carbon infrastructure can be supported by detailed maps, models of energy efficiency, and models of 

human behavior.  

2.4.1. Infrastructure management  

The tension between the need of case-specific studies and scalable solutions for deep decarbonization – particularly 

exacerbated in the research on buildings – could be partly alleviated by ML applications that provide new tools to 

identify and transfer individual solutions between different contexts (Ma & Cheng, 2017; Mocanu et al., 2016; Zhang 

et al., 2018).  

Table 1 Examples of mitigation-relevant applications of machine learning methods for each field reviewed. 



 

Question 

 

Climate significance 

 

ML algorithm 

 

Spatially-explicit example 

    

Climate change mitigation   

 

Urbanization linked to deforestation(Ruth S. 

DeFries et al., 2010)  

Carbon stock estimation (forests(Baccini 

et al., 2012)) 

Monitoring; Conservation; Land use 

policy 

All 

Mapping GHG emissions (cities(Tao et 

al., 2014))  

 

Monitoring; policy design SL, RF 

Energy system and end uses  

(determinants(F. Creutzig et al., 2015)) 

Supporting energy policies, planning 

and transition pathways analyses 

SL, Clu. 

 

Behavioral aspects (attitudes(Beiser-

McGrath & Huber, 2018),  

acceptance(Carr-Cornish et al., 2011), 

engagement(Jones et al., 2017)) 

Targeting policy implementation; 

Designing demand-side measures 

DR, RL 

 

Remote sensing    

 

Convolutional filters can identify land uses(Jean 

et al., 2016) 

 

Socio-economic factors inference 

(poverty(Jean et al., 2016), 

demographics(Naik et al., 2016)) 

Monitoring; Planning; Establishing 

development aid needed 

DR, SL 

 

Stocks assessments  

(buildings(Esch et al., 2017), forest(R. S. 

DeFries et al., 2002)) 

Input for urban and energy planning DL, UL 

 

Geophysical or biochemical quantities  

(CO2 concentration(Tao et al., 2014)) 

Monitoring; Parameters for models 

(climate, agriculture, etc.) 

DL 

Characterizing infrastructure  

(building type(Geiß et al., 2011; Sturrock 

et al., 2018; Wurm et al., 2016))  

Input for urban and energy planning DL 

Building energy use    

 

Parcel-level energy use prediction in 

NYC(Kontokosta & Tull, 2017) 

Contextual factors of energy use 

(occupancy(Shaikh et al., 2014), 

behaviors(Albert & Maasoumy, 2016; 

Gabe-Thomas et al., 2016)) 

Reducing demand due to consumer 

behavior  

DTs, Clu. 

 

Building energy use estimation 

(individual(Mocanu et al., 2016; Ribeiro et 

al., 2018), building stock(Kontokosta & 

Tull, 2017; Papadopoulos et al., 2018)) 

Estimating retrofit potential; Efficiency 

measures 

NNs, RF 

 

Typologies(Khayatian et al., 2017) & 

solution transfer (Ma & Cheng, 2017) 

Accelerating the spread of best know-

hows 

Clu., DR, SL 

Optimizing heating/cooling devices 

(HVAC, fault detection, etc. (Afroz et al., 

2018; Harish & Kumar, 2016; Shaikh et 

al., 2014)) 

Reducing demand by efficiency 

measures 

SL, RL 

    



 

ML methods can accelerate spatially explicit assessments of the energy and retrofit potential to entire building 

stocks, by imputing building level data where none is available (Zhang et al., 2018). Going beyond micro-optimization 

with large-scale and precise assessments is crucial to leverage the full potential of ML for mitigating the emissions 

from the building sector. About 7 % of the literature base applies ML algorithms to identify energy use patterns in 

large building stocks. For example, in New York City, building characteristics and fuel type for over 15,000 buildings 

were used to predict the energy use of the city’s building stock, which is about one million buildings (Kontokosta & 

Tull, 2017). The same research group could also identify in these data which buildings drive aggregate energy use 

and where energy conservation schemes were most effective (Papadopoulos, Bonczak, & Kontokosta, 2018). A 

further step is the production of retrofit typologies at regional or national scale. For example, ML approaches can 

compress building characteristics into indicators that support national building retrofit policies (Khayatian et al., 

2017).  

Intelligent transportation systems make traffic patterns more efficient, but may be compromised by rebound effects. 

However, coupled with public policy, intelligent transportation systems could deliver substantial system-wide 

efficiency gains and resulting contributions to climate change mitigation. For traffic control – with ramp metering, 

traffic lights or signal control – reinforcement learning can reduce energy use by optimizing circulation (Yau, Qadir, 

Khoo, Ling, & Komisarczuk, 2017).  

2.4.2. Modify infrastructures  

A handful of promising studies (1 %) have targeted urban planning, investigating the links between urban form at 

different scales and sustainability metrics (Ding, Cao, & Næss, 2018; T. Tao, Wang, & Cao, 2020; Wu, Tao, Cao, Fan, 

& Ramaswami, 2019). For example, one application at the city-level found a strongly non-linear relationship 

between distance to the city center and driving distance in Oslo – offering novel evidence relevant for the mitigation 

potential of denser cities (Ding et al., 2018). At the neighborhood level, another study could show the impact of 

walking distance to a station on transit ridership (T. Tao et al., 2020). ML can also enable carbon intensity 

improvements in land transport by supporting the development of low-carbon modes. For example, one class of ML 

applications optimizes the charging infrastructure of electric vehicles (Rigas, Ramchurn, & Bassiliades, 2015). ML 

was also applied to estimate the power demand of electric vehicles (Longo, Foiadelli, Franzo, Frattini, & Latilla, 

2017). For choosing the location of new docking-station-free shared bikes, ML can predict bike trips supply and 

Urban transportation   

 

AI classifies cars to predict social 

attributes(Gebru et al., 2017) 

Mobility pattern discovery from 

sensors or user data(Zhao et al., 2016) 

Mitigating emissions from tourism, 

urban commuting 

UL, DL 

Modal shift  

(discrete choice modelling(Paredes et al., 

2017; Wang & Zhao, 2018; Yang et al., 

2018)) 

Reducing carbon intensity SL, RL 

Electric vehicle deployment(Longo et 

al., 2017; Rigas et al., 2015; Wolf et al., 

2015) 

Reducing carbon intensity  SL, RL 

Role of urban form(Ding et al., 2018; 

Monajem & Ekram Nosratian, 2015) 

Reducing transportation demand SL, UL 

Abbreviations | GHG: GreenHouse Gas(es), HVAC: Heating, Ventilation, and Air Conditioning, GPS: Global Positioning System, CDR: Call Details Record 

Methods | SL: Supervised Learning, UL: Unsupervised Learning, DL: Deep Learning, RL: Reinforcement Learning, DR: Dimensionality Reduction, Clu.: 

Clustering, DTs: Decision Trees, NNs: Neural Networks. 



demand (Xu, Ji, & Liu, 2018) and reinforcement learning can help rebalance the fleet within the city (Wen et al., 

2017).  

2.4.3. Transfers of knowledge across geographies  

By “decoding deep similarities” as phrased by P. Ball (Ball, 2017), comparative research enables local policy makers 

to learn about structural components of urban transitions into low-carbon futures, identified from international 

comparisons, and how they could apply or not to the specifics of their cities. Some papers investigate the spatial 

transferability of their approach (Biljecki et al., 2017; Jean et al., 2016; Ma & Cheng, 2017; Mocanu et al., 2016; Tang, 

Xiong, & Zhang, 2018). For example, certain ML-based travel demand models can transfer well to other cities with 

similar characteristics (Tang et al., 2018).  

Typologies using supervised learning allow sorting contexts according to the drivers of energy use and GHG 

emissions, and also offer further inputs for projection in new geographies. For example, a study identified socio-

economic features from the leading US counties in the adoption of green building standards, which they used to 

predict green building deployment in Chinese provinces (Ma & Cheng, 2017). Another example incorporated city-

specific context into worldwide analysis by creating a typology of hundreds of cities’ energy use, consisting of clusters 

of cities, each characterized by thresholding combinations of energy-use drivers, such as income, population density, 

fuel prices, and local climate variables (Creutzig, Baiocchi, Bierkandt, Pichler, & Seto, 2015).  

The existing research shows many relevant strands for contextualized and geographically differentiated climate 

change mitigation. But it is unclear how the individual components act together, and how the existing expertise can 

be organized into a community-wide effort in providing agile, efficient, and scalable solutions for low-carbon cities. 

In the following, we discuss an algorithmic architecture that aims to fill this gap.  

3. An algorithmic architecture for scalable low-carbon urban planning  

Machine learning can foster a new class of spatially precise climate mitigation solutions in urban planning that can 

be scaled to data-scarce environments, if certain conditions are fulfilled. Building on our systematic analysis of the 

literature, we detail how to tailor workflows that are intended to support decision making at the municipal level and 

to foster systematic knowledge sharing between cities. Our focus is on urban planning, but most points are also 

pertinent to other mitigation studies with explicit spatial resolution.  

We first discuss limitations and shortcomings we identified in the existing literature base. Second, we articulate an 

architecture of “Machine learning for low-carbon Urban Planning” (ML-UP) that systematically utilizes machine-

learning algorithms at different stages of data processing. Third, we outline the potential of the proposed modelling 

architecture to enhance current global urban climate mitigation scenarios, and to provide geographically 

differentiated mitigation strategies across human settlements.  

3.1. Optimizing existing infrastructure with ML is insufficient  

We see three main limitations for applying the surveyed literature for geographically differentiated climate change 

mitigation: (i) a predominant focus on behavioral models and business applications that also increase social risks of 

surveillance; (ii) a large dominance of utilizing ML for efficient use of existing infrastructure; (iii) a resulting lack of 

public policy analysis.  

Many ML applications with relevance for reducing energy demand or GHG emissions intend to change user behavior 

(Albert & Maasoumy, 2016; Bertone et al., 2018; Gabe-Thomas et al., 2016; Wolf et al., 2015). The role of behavioral 

models for creating mitigation-relevant social knowledge is promising but they also bear important concerns about 

privacy and freedom. Behavioral models take advantage of user data to capture patterns on specific people’s or 

groups’ lifestyles and choices. Even if individual data, such as mobility patterns, can be anonymized, guaranteeing 

user privacy in behavioral models is very challenging (de Montjoye, Hidalgo, Verleysen, & Blondel, 2013). Current 



developments hold value for research on urban functions but remain highly sensitive in the context of surveillance 

states (Couldry & Mejias, 2018). ML applications for behavioral models are nonetheless likely to expand due to 

multiple industries’ interests, and opportunities from geo-located app data, which are widely collected and cheaper 

to access.  

Overall, the reviewed literature from end-use sectors mostly investigates efficiency improvements, provided by 

measures such as smart metering and traffic flow optimization. 95 % of the literature on buildings and more than 60 

% of the literature on transport covers such efficiency measures. Efficiency improvements counterfactually and 

effectively reduce energy demand, but this effect is impacted by rebound effects (Azevedo, 2014). Reducing road 

congestion can produce new demand and lead to additional traffic, partially negating the effect of demand reduction 

(Gossart, 2015). Similarly, smart appliances can generate energy use from new end-uses. Both sorts of rebound 

effects are typically in the order of 10–20 % (Chen, Li, Lu, Rau, & Huang, 2018; Hymel, Small, & Dender, 2010); hence 

they reduce the effectiveness of technological efficiency improvements without disqualifying them.  

In contrast, public policy aiming to utilize ML for climate change mitigation or energy conversation is only scarcely 

investigated in the literature. Only 1.5 % of the transport and building ML literature investigates policies (26 and 18 

studies respectively). These include ex-post evaluation of fuel standard policies relying on statistical learning 

techniques (Huseynov & Palma, 2018), and the application of Bayesian networks to investigate how different 

financing mechanisms would affect willingness to retrofit (Bertone et al., 2018). For the uptake of improved 

technologies, policies are crucial to signal and incentivize shifts. Public policies could foster the use of ML towards 

more effective climate change mitigation, and constrain rebound effects of efficiency improvements – through 

infrastructure provision, price incentives or standards.  

3.2. Leveraging the mitigation potential of urban planning  

Urban spatial configurations harbor robust and long-term mitigation potential (Creutzig et al., 2018). For example, 

urban sprawl induces carbon-intensive transport and building use; but if connectivity is high, land-use is mixed, and 

structures are compact, the spatial structures are conducive of low-carbon transport systems and short-distance 

travel (Seto et al., 2014). Urban planning with its focus on building structures and mobility patterns is central to 

providing low-carbon infrastructures, but until now has only been considered in a small segment of the machine 

learning literature pertinent to climate change mitigation.  

Focusing on urban planning presents multiple advantages. First, it targets absolute demand reduction, not only 

efficiency improvements. For example, for transportation, planning can reduce the distances travelled (Ewing & 

Cervero, 2017); for buildings, planning can help develop neighborhoods that synergically re-utilize resources (Petit-

Boix & Leipold, 2018). Second, infrastructures can endogenously shape people’s preferences (Creutzig, Fernandez 

et al., 2016). People are more likely to shift to less emitting transport modes, such as bikes, if bike lanes are abundant, 

convenient, and safe. Third, it is important to prevent lock-ins in poorly designed infrastructure: an infrastructure 

will be kept for decades, and bad planning alone could lead to the exhaustion of the 1.5C carbon budget by 2050 

(Creutzig, Agoston et al., 2016). Fourth, urban planning requires to a much lesser extend behavioral models and 

micro-sensors, and hence less or even zero privacy-compromising data.  

There are two main challenges towards providing low-carbon urban planning scenarios at high spatial and contextual 

resolution: (1) generating high-resolution energy or emission data to create digital models of cities’ energy use and 

emission patterns; and (2) subsequently identifying concrete urban planning solutions for climate change mitigation.  

The proposed infrastructure of “Machine Learning for low-carbon Urban Planning” (ML-UP) addresses these two 

classes of challenges, and is summarized in Fig. 4A and exemplified in Fig. 4B for a concrete example on buildings. 

The architecture is structured around sequentially stacked ML applications. ML methods are further grouped into 

three usages: information compression (from high dimensional data to useful features), information enrichment (by 

predicting future or inaccessible information) and solution-oriented information processing – see red circles in Fig. 

4A.  



 



Fig. 4. An architecture of machine learning for low-carbon urban planning (ML-UP). (A) ML-UP is an information flow from raw 

data to semantically relevant data for climate change mitigation-oriented urban planning. The data can be processed by a 

succession of different phases including ML and other media. (B) An example workflow for estimating the energy use of individual 

buildings at large scale. Spatial data available at large scale are trained with precisely metered building data available only at a 

limited scale. 

3.2.1. Generating climate semantics  

As first key challenge, generating mitigation-relevant digital models of cities requires spatialized climate data, i.e. 

information on urban GHG emissions, or more specifically, for example on the energy use of each building of a given 

building stock. The main bottleneck for modelling spatially at such scales is the requirement of consistent gridded 

data – while existing data on cities are selective, biased, and inconsistent (F. Creutzig et al., 2019).  

The starting point of ML-UP is to process the available spatial data on cities (Fig. 4A). Remote sensing data is 

compressed by unsupervised or supervised learning to classify earth observations into semantic and geometric 

information on land use classes. Additionally, volunteered geographic information, such as OpenStreetMap, 

provides primary data that is spatially explicit (Fig. 4A, physical infrastructure). Many geo-localized digital traces 

could be also exploited. For example, natural language processing tools can identify geo-localized urban activities 

from publicly available text obtained from, e.g. Twitter (Rahim Taleqani, Hough, & Nygard, 2019), where location 

information can be extracted and associated to activities of relevance.  

The central task consists in generating climate change mitigation semantics, such as energy use or GHG emissions 

(central box in Fig. 4A), by integrating spatialized information on energy end-uses with the processed information 

on the spatial structure of cities. Climate semantics can be generated using different routes: directly or through 

intermediary metrics.  

The direct route is to train urban form data with spatialized energy use in supervised learning algorithms (Fig. 4A 

central box left). It has already been demonstrated that climate mitigation semantics can be derived from the 

characteristics of urban activities and form – e.g. density, land use mix, connectivity and accessibility (Creutzig, 

Fernandez et al., 2016; Ewing & Cervero, 2017; Silva et al., 2017; Silva, Khan et al., 2018, Silva, Leal et al., 2018). A 

spatially explicit analysis of the energy demand for buildings and transportation using ML shows that urban form 

explains about 80 % of the variation in energy use in the city of Porto (Silva et al., 2017). Mobility patterns, transport 

networks, attraction poles, or population densities are all related to the energy used for transportation. Similarly, 

building features – such as their own geometries or their configuration within neighborhoods, for example whether 

buildings are contiguous or not – also contain relevant information about their energy use and emission patterns. 

The extent of the potential of this direct route remains so far speculative and depends on the availability of training 

data as well transferability performances.  

An alternative route is to predict intermediate metrics and use back-end modelling (Fig. 4A central box right). 

Intermediary metrics extracted from spatial data – either abstract encodings or real quantities e.g. the volume of a 

building or the distance travelled by a vehicle – can be predictive of energy use and GHG emissions (Liu, Li, Wu, & 

Li, 2018; Robinson et al., 2017). This route can utilize several ML methods sequentially for different tasks (Kaack, 

Chen, & Morgan, 2019; Liu et al., 2018). ML and other modelling can also be combined (Abdulkareem, 2019). Simple 

back-of-the-envelope models relying on identified mechanical relations, regression techniques (Jean et al., 2016; Liu 

et al., 2018), as well as fully-fledged systems dynamics or agent-based models (Toole et al., 2015), use the 

intermediary metrics as inputs. The example on Fig. 4B follows the sequential route. Urban form data is mapped 

with ground truth building heights in a convolutional neural network to estimate a 3D building stock as an 

intermediary metric. Main types of buildings in the region are clustered in an interpretable fashion, that reveals the 

key parameters influencing energy use across clusters, using regression trees (Baiocchi, Creutzig, Minx, & Pichler, 

2015; Creutzig et al., 2015). Both sets of information are fed into a simple energy model together with climatic data, 

to find the minimal energy use for heating and cooling the entire building stock. These distinct phases can favor 

more interpretability – and in certain cases, more scalability – between feature extraction and prediction.  



Overall, information on energy use and emissions from buildings and the transportation sectors could be generated 

at large scale and at high resolution, while respecting heterogeneities across scales. Another phase of compression 

via typologies can help relate energy use patterns to categories of emitters (F. Creutzig et al., 2015), and help grasp 

better in which conditions certain GHG emissions patterns occur.  

3.2.2. Actionable solutions  

The second key challenge is to make the knowledge about the energy use and emission patterns of cities actionable 

for policy makers. All cities are different and develop with geography, culture, demographics, and economy along 

path-dependent trajectories (Arthur, 1988). Such context requires accounting dynamically for changes in relevant 

interacting dimensions within urban environments, including economic mechanisms, urban form, local climate, and 

social norms or ties. Hence, a second block of ML-UP focuses on action-oriented prospective predictions, making use 

of scenario techniques and advances in causal inference research (Fig. 4A). The energy performance of urban 

planning scenarios can be assessed with supervised learning. A study showed that higher density, and constructing 

around key public transport stations, were yielding the most energy consumption reductions among various 

scenarios (Silva, Leal et al., 2018). To further evaluate policies, causal inference and explanatory models (Bertone et 

al., 2018) complement the ML-UP architecture. For example, the city-based difference-in-difference methodology 

(Blake, Nosko, & Tadelis, 2015) might be helpful to evaluate the causal effect of providing cycling infrastructure on 

modal shift. As another example, lasso regression used on electricity consumption data from schools in California 

found a causal effect of energy efficiency interventions that falls short of the expected savings (Burlig, Knittel, 

Rapson, Reguant, & Wolfram, 2017).  

There are several barriers to ML-UP. First, aggregating heterogeneous sources of data bears considerable search 

costs, as well as complex (ML-based and other) harmonization methods, like data matching (Bordes, Glorot, Weston, 

& Bengio, 2014). The quality of training data could be insufficient in certain cases, making it impossible even for 

advanced generalization methods to fill the gaps completely. Second, the data underlying behavioral models are 

inconsistent with privacy concerns and undesired social control if not carefully governed. Third, interpretability is 

repetitively raised as a central issue in machine learning (Montavon, Samek, & Müller, 2018; Reichstein et al., 2019) 

and consistency issues could appear within phases of ML-UP. Fourth, not everything is quantifiable and much of the 

local context in term of culture, jurisdictions, etc. are difficult to fit in this framework and requires other types of 

analyses. However, Google’s Environmental Insights Explorer and recent advances in Earth System Modelling (Rasp 

et al., 2018; Reichstein et al., 2019) demonstrate that modular and sequential architectures similar to ML-UP 

successfully integrate machine learning and physical modelling for spatial and dynamical problems.  

3.3. Governance implications  

The outlined architecture of ML for low-carbon urban planning – if deployed at scale – could have implications for 

the structuring of the solution space for climate change mitigation. It also stipulates more agile and rapid deployment 

of effective solution strategies with the potential to generalize insights from data-rich to data-poor settings, and 

thus help policy identification for more human settlements than currently possible.  

First, results from high spatial resolution models, if applied to a large number of cities at the global scale, would 

restructure the solution space for climate change mitigation. Going beyond the highly aggregated state-of-the-art 

global models or back-of-the-envelope calculations is a necessity to provide realistic global estimates of the 

mitigation potential from cities. Spatially explicit modelling can improve generic global models by enabling a better 

accounting of local heterogeneity.  

Generating models of urban climate mitigation solutions at high spatial resolution would transform global 

environmental assessments, such as those of the IPCC. Instead of providing long-term scenarios with abstract policy 

suggestions, place-specific solution strategies could then be compared and evaluated. Up to now, IPCC reports 

emphasized technologies that were possible to operationalize in energy system models. Contextualized demand-

side solutions, such as a myriad of behavior and infrastructure options relevant to energy savings in buildings, in 



contrast, were difficult if not impossible to model and to represent in high-level models. With the approaches 

presented in this study, contextualized, place-specific and demand-side options may be evaluated at the global scale, 

while respecting local contexts. As a result, the understanding of the solution space might experience a shift away 

from energy supply-side technologies, to urban planning and contextualized solutions.  

Second, ML-UP aims to provide urban policy makers actionable information for implementing municipal climate 

action. Mayors of the biggest and richest cities advance climate action, but medium and small-sized cities, where 

the largest part of the world’s urban population lives, mostly lack data-driven insights and policy commitment (Lamb, 

Creutzig, Callaghan, & Minx, 2019; Nagendra, Bai, Brondizio, & Lwasa, 2018). With data and learning across 

municipal jurisdictions, ML-UP could empower policy makers also of smaller and medium-sized cities to advance 

data science supported strategies. For example, standardized and comparable information on the ecological 

footprint of physical assets could support (public) investors’ choices, by giving them a better visibility on the impacts 

of their portfolio.  

Typologies and syntheses of cases studies together help cities learn about climate solutions (Lamb et al., 2019). 

Developing taxonomies of cities may enable groups of similar cities to draw from the same pool of solutions, or learn 

from early pioneers in climate policy (Lamb et al., 2019). Existing qualitative typologies, like the Atkins Future 

Proofing Cities report, which linked for more than a hundred cities their structural features and detailed policies 

options, could become more systematized and quantitatively accurate with ML. A growing research strain identified 

in this review uses ML to generate quantitative typologies at the city (Creutzig et al., 2015; Han et al., 2018), district 

(Baiocchi et al., 2015) and street scales (Louf & Barthelemy, 2014) that both capture universalities (e.g. fuel prices 

influence the sprawl of cities (Creutzig et al., 2015) or similar street patterns can identified across continents (Louf 

& Barthelemy, 2014)) and consider local specificities (e.g. by using as input local socio-economic variables (Creutzig 

et al., 2015) or urban form data (Louf & Barthelemy, 2014)). Nonetheless, quantitative typologies do not fully explore 

the underlying political and social conditions, dimensions that only can be brought through evidence syntheses of 

case studies as a complementary strategy (Lamb et al., 2019).  

Third, ML-UP would have the highest value in low-income countries with small resources for bottom-up policy 

modelling. Cities in low-income countries with rapid population growth and urbanization are a priority for mitigation 

strategies (IPCC, 2014; Nagendra et al., 2018), while the literature has been biased towards the global North and 

disproportionally focused on megacities (Lamb et al., 2019). Low-income countries tend to have little data available, 

which is often due to weaker governance and statistics collection capacities. This situation can hinder the use of ML, 

but it also makes it particularly relevant for predicting lacking information. In this context, those ML techniques that 

are most capable of taking advantage of small amount of available training data are particularly relevant and require 

further applications. Few-shots learning (Fei-Fei, Fergus, & Perona, 2006), meta-learning (Mishra, Rohaninejad, 

Chen, & Abbeel, 2018), transfer learning (Jean et al., 2016) can be determinant in overcoming current limitations. 

ML could help formulate policies but their implementation depend on local actors, with strong institutions and 

political will.  

4. Conclusion  

Artificial intelligence and machine learning hold considerable but still underutilized potential for a geographically 

differentiated and contextualized design of measures that reduce GHG emissions. Distinct research contributions 

include mapping human settlements, deploying energy-efficient systems, understanding behavioral patterns, and 

designing low-carbon urban infrastructures. We argue that the planning of low-carbon urban infrastructures carries 

high potential but currently receives scarce attention in the literature. We suggest an algorithmic architecture, ML-

UP, that is designed to orient the intersection of machine learning research, urban planning and studies of climate 

change mitigation towards a common research framework. Climate change mitigation at relevant scale will only be 

achieved on conjunction with well-designed public policy. 
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